

String processing and XML

Menyhárt, László1
1 menyhart@elte.hu

ELTE IK

Abstract. In my opinion there are real, day to day problems which are very important in

teaching. I would propose that we use XML to teach string processing. In this article I present

my approach and a suggested curriculum. I tested it on two groups in ELTE, and I carried out an

assessment, which is also analysed here.

1. Introduction

The subject of my PhD is XML. I am teaching in the Eötvös Loránd Science University (ELTE)

where I had some courses about string processing. I could see that the base algorithms are not too

interesting for the students. That is why I tried to create some new practises. I chose the topic from my

favourite XML. The SAX parsing is a simple sequential string processing method which can be used

to present the importance of this course. This common problem is solved by a lot of implementation

or we can create a simplistic application, too.

I worked out the curriculum which is presented here, and I had a chance to test it in two groups

where the students filled out a survey.

This article and its appendices are available on the [1] URL.

2. Curriculum

I created a new topic for this course with practises based on my idea. Now I present lesson plans for

two 90 minute lessons, and the hand-out which is useful for the teacher and the students, too.

Two lessons plan

First lesson

 Introduction (Booting and filling the first part of the survey) – 5 minutes

 XML review – 15 minutes

o HTML. What is difference in XML? What does it do? Why do we use it?

o String file:readability, processability, …

o Well-formed

 Now we expect another restriction, because in this way we can handle it

more easily: “Very well”-formed

 Processing XML – 10 minutes

Menyhárt, László

 2

o DOM

 tree data-structure

o SAX (in more detail)

 startDocument, endDocument, startElement, endElement,
findCharacters

 others unmanaged events

 Reviewing SAX_template – 15 minutes

o Downloading and unzipping

o Running SAX_example

o Reviewing surface, types, variables and functions of SAX_template

 Practise 1 – 25 minutes

o Implementation of SAX parsing

 Designing of “event-functions”: How can we create a table?

 Coding into the SAX_template

 Practise 2 – 20 minutes

o Implementation of getAttributeValue

 Theorem of Linear searching

 Coding into the SAX_template

 Homework

o Continue and finish the code

Second lesson

 Introduction (Booting and review of the previous lesson) – 5 minutes

 Practise 3/a. – 20 minutes

o Design ‘parseXML’ function

 Practises 4/a. – 20 minutes

o Design co-procedures and helpers

 Practises 4/b. – 20 minutes

o Implementation of co-procedures with coding into the SAX_template

 Practise 3/b. – 22 minutes

o Implementation of parseXML with coding into the SAX_template

 Fill the second part of the survey – 3 minutes

 Homework

1. Continue and finish the code!

2. Rewrite SAX_handler to generate a “list” instead of a “table”.

3. Implement readCDATASection

4. How can we generalize the parseXML procedure? (It can be made common to

every (not very-well formed) XML file.)

Regarding another idea the order can be changed. On the first coding lesson students implement

the functions based on the given algorithms and only on the second lesson can they understand the

motive (XML processing).

String processing and XML

 3

What was taught in the class

So we introduced the class to XML and SAX processing. We created our own implementation in a

pre-implemented template application.

XML and its processing

XML is a well-known technology ([2]). That is why I do not write about it in this article. It can be

processed by DOM (Document Object Model) as a tree-structure ([3]) or with SAX (Simple API for

XML) ([4]). The second philosophy looks at the XML document as a sequential text file. This part

can be available in more detail in ([1]).

SAX_template

Download

http://xml.inf.elte.hu/articles/TMCS_2012_StringprocessingXML/SAX_template.zip ([8])

Files

Name of file Description

unit1.pas Main program to be displayed. Do not modify!

saxunit.pas It contains the general parsing procedure and the co-functions.

SAX_handler.inc It contains the event-functions

Table 1: Important files

Users view

Figure 1: View of the template application

http://xml.inf.elte.hu/articles/TMCS_2012_StringprocessingXML/SAX_template.zip

Menyhárt, László

 4

Types

We defined a new type for storing the name and value of the attribute.
TAttribute=Record

 name:String

 value: String

end

An element can have more attributes, so we store them in an array.
TAttributeArray=Array(1..100:TAttribute)

We manage the count to use it as a list (almost).
TAttributeList= Record

 count:integer;

 item:TAttributeArray;

end

Variables

The main variables in the SAX class are the generated text, the log and the text file which has

XML content.
parsedStr,log:String;

f_xml:TextFile;

Co-variables

We need some other variables to read forward a character or to collect the characters.
ch:Character;

s1,s:String;

We manage the name and value of attributes detached and in a list, too.
ename,value: String;

att_list:TAttributeList;

We must find the position of “=” (the equal sign) character.
p: integer;

We will use a variable for the loop.
i: integer;

Notify the end of the tag or node.
endoftag,endofnode:Boolean;

Procedures and functions

We need getter/setter functions to reach the main variables.
setString(fs: String);

setLog(fs: String);

getString: String;

getLog: String;

We want to append strings to the main variables.
addString(fs: String);

addLog(fs: String);

String processing and XML

 5

The next procedure makes the general XML processing.
parseXML(fname: String);

The previous procedure needs the following co-functions.
readForwardACharacter: String;

readToLess: String;

readToGreater: String;

readAWord(endoftag: Boolean;endofnode: Boolean): String;

readCDATASection: String;

readAttributesTo(att_list:TAttributeList; endofnode: Boolean);

The next 5 procedure will be overwritten as event-functions. These are in SAX_handler.inc

file.
startDocument;

endDocument;

startElement(ename: String;attr_list:TAttributeList);

endElement(ename: String);

findCharacters(value: String);

The following is a co-function for parsing the attributes in the opening tag.
getAttributeValue(attr_list:TAttributeList;aname: String): String;

The implemented algorithms are available in ([1]). Students got only the frame of these functions.

The task was creating the bodies of every function.

3. Opinions and survey analysis

I established two groups in ELTE, both of which had two lessons. The students were in a minor

BSc informatics teaching course1. The name of the lesson is “Programming Fundamentals (M1,M2) /

Programozási Alapismeretek (M1,M2)” ([6]).

The first group was the control group, which did not get the hand-out ([7]). The second group

received it. Independently from this I think the second group was more active and more inquisitive.

The first group was not able to answer the question: “Which tags must be written to define a table in

HTML?”. The answer would have been: table, tr, and td. Their knowledge of HTML is too high

and they felt the question is too simple. Or they were not so active and they hated the new teacher,

with new methodologies.

In the first year I tried to use these methods in one lesson for two groups but in these lessons we

did not have enough time to implement the algorithms. In the first group we could talk about the

algorithms (3/a, 4/a) without implementation (4/b, 3/b). Within the second group there were teams of

2-3 people, each coding functions but they were unable to run the complete application. Every team

implemented one function in isolation from others. Students were more efficient with this “mini

project” methodology.

1 This course is for students who will be teachers. Their informatics subject will be the second one beside the

main subject.

Menyhárt, László

 6

This has been confirmed by the results of the survey. My colleagues and I recorded the minutes at

the checkpoints during the lessons and the timing was kept. Based on these findings I recommend two

lessons for this topic.

I asked the students to fill out the following survey. It contained three parts. The first part of the

survey was filled at the beginning of the lesson. Part one is designed for self-analysis of student’s

knowledge of the topics

1. Your mark in “Web-development 1. / Webfejlesztés 1” (if no mark, leave blank)

2. Knowledge of HTML (according to you)

3. Knowledge of XML before the lesson

4. Knowledge of XML parsing before the lesson

5. Knowledge of Pascal programming language

6. Knowledge of Lazarus IDE

“Web-development 1. / Webfejlesztés 1” is an optional subject in the first semester in topic of

HTML knowledge. The answers could be these:

1. insufficient; not …

2. sufficient

3. medium; pass for …

4. good

5. excellent; very …

The second part of the survey was filled at the end of the second lesson. Questions were these:

1. Attention level during lessons

2. Knowledge level at the end of the lesson. (How do you feel?)

3. How do you rate this topic?

4. How do you rate the order of the lessons?

5. How do you rate the teacher’s knowledge?

6. How do you rate the teacher’s presentation style?

7. Rate the template application’s ease of appearance

8. Rate the template application’s ease of usability

9. Rate the template application’s ease of implementation

10. Rate the ease of implementation of SAX parsing (create “event-functions”)

11. Rate the ease of implementation of getAttributeValue (linear searching theorem)

12. Rate the ease of implementation of parseXML (complex task, requiring more thinking /

thought-provoking)

13. Rate the ease of implementation of co-functions (easier, “more precisely” task)

The answers should be the same as the previous ones.

Finally the third part of the survey contained two questions that could be answered in free text.

1. What did you like in the lesson?

String processing and XML

 7

2. What did you NOT like on the lesson?

The result file (5_results_hu.xlsx) is attached into the [1].

I present here my conclusions:

 Their knowledge of HTML is medium (3)

 They had no XML knowledge (1.175)

 Pascal programming language is known moderately (2.8)

 Lazarus IDE knowledge is low (1.85)

 Their attention was held well (3.8)

 They learned something (2.5)

 About the lesson

o The topic is good (4,05)

o The order of the lesson is good (3.9)

o The teacher’s knowledge was good (4.65)

o The teacher’s presentation style was good (4.15)

o These questions were rated well by the second group (0.7). They could work

from the hand-out. It worked!

 The template application is good (4.01). It was preferred by the second group, too.

 The rating of SAX parsing was better by 0.5 in the second group (3.3).

 The implementation of getAttributeValue was medium (3.05). They did not know

the linear searching algorithm. If they had, it would have been only a coding exercise.

 The last two exercises were rated not so good (3). We could only review these on the first

lesson and one week later it was forgotten.

 So we can see that medium HTML knowledge is enough for understanding XML and

performing transformations to HTML.

I regret that but unfortunately I forgot to take a vote about the next question: “Do you think this

course should be included in the next semester or not? (Y/N)”

Here I would like to share some answers from the free texts.

Answers to the first question:

1. Practical tasks

2. The basic idea of the HTML transformer

3. The topic itself.

4. Acquisition of new knowledge

5. The application was very funny and “cute”!

6. I learned more interesting new things, which will be useful.

7. At last we learned meaningful things on an example which can be used in life!

Answers to the second question:

1. Unfortunately I was late 40 minutes

2. There was a lot of background information so not everything could be understood.

3. The speed. I was not prepared to use other applications and there were some problems

with my Linux. (She had her own laptop and she did not use the computer in the lab.)

4. It required a bit too much complex knowledge. The framework program was more

complex as well. The development required even more knowledge. But at least it was

interesting. More like this!

Menyhárt, László

 8

5. It was a bit fast, but I was awfully tired. Maybe this was the problem. :)

These answers confirm that the students need every day problems to practice on instead of dry

theoretical examples.

4. Conclusion

In this paper I presented a new idea for teaching string processing, a lesson plan is available and I

analysed the survey that was completed during the two test-lessons. The presentation, the lesson plan,

the survey, the hand-out, the results and the applications are available on the URL [1]. I received

confirmation that the students are more interested in day by day problems than the fictional,

theoretical, unnatural examples. Unfortunately till now I did not find other schools where string

processing would be taught with XML parsing examples.

References

1. Menyhárt, László: String Processing and XML, INFODIDACT 2010, Szombathely (2010)

http://xml.inf.elte.hu/articles/StringProcessing&XML.zip

2. Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C (2008)

http://www.w3.org/TR/xml/

3. Document Object Model (DOM) Level 1 Specification, W3C (1998)

http://www.w3.org/TR/REC-DOM-Level-1/

4. Simple API for XML (2004)

http://www.saxproject.org/

5. Pap, Gáborné; Szlávi, Péter; Zsakó, László: mikrológia 14, Módszeres programozás: Szövegfeldolgozás

(1995) 4. edition

6. Programming Fundamentals (M1,M2) / Programozási alapismeretek (M1,M2) (2010)

http://progalapm.elte.hu

7. Hand-out

http://xml.inf.elte.hu/articles/TMCS_2012_StringprocessingXML/Hand-out_hu.docx

8. URL of Template application:

http://xml.inf.elte.hu/articles/TMCS_2012_StringprocessingXML/SAX_template.zip

http://xml.inf.elte.hu/articles/StringProcessing&XML.zip
http://www.w3.org/TR/xml/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.saxproject.org/
http://progalapm.elte.hu/
http://xml.inf.elte.hu/articles/TMCS_2012_StringprocessingXML/Hand-out_hu.docx
http://xml.inf.elte.hu/articles/TMCS_2012_StringprocessingXML/SAX_template.zip

